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looking back and a recap

Definition 1
A givens rotation is represented by a matrix of the form

1 ... 0 ... O ... 0
0 G —5 0
0 s @ 0
_O .. S ... Cc ... O_

where ¢ = cos(f) and s = sin(#). Here ¢, s € R but generalization to
¢, s € C can be made.



Universality

Theorem 1
G (1, 7, 0) is orthonormal and generalizations with complex valued entries
are unitary

Theorem 2

Any matrix A € RY*? can be written as a product of an orthonormal matrix
and an upper triangular matrix, i.e.

A=QR
When the starting matrix is unitary, there is an added consequence that R. is
diagonal.
Proof.

Not an actual proof but the idea is simply for a given i, j to select an
appropriate givens matrix and on multiplying by the left with A; can
zero out an entry along the main diagonal. O
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Decomposition Lengths
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Fidelity Analysis (a sketch)

Each givens rotation can be written as exp(i6H) for some hermitian H
and some angle §. We’ve dealt with decomposition length so we now
focus on primary fidelity. We now assume that physically we can
realize each givens rotation with some rotation angle error namely
exp(i(6 + §)H). More concretely let k be the decomposition length of
the unitary that we’d like to implement, thereby giving us

k k
Uldeal = H exp(i;H;) = H U;
=1 =1

and

k k
1on—HeXp (0; +6;)H Hexpz@H)expzéH HUE

i=1 =1



fidelity analysis (a sketch)

Assume some arbitrary starting state |1)), then

F ‘< \Uldealumwﬂ ‘< (HU)T@U@ w>>‘

\< >] (wlesp i+ F1) )|

- (1 B k.2a2>
2

Matches intuition somewhat (calculation not as important as result

where fidelity depends on the decomposition length and rotation
angle error)



Characterizing multi-level qudit entanglement



A motivating example

Consider the two ququart "maximally entangled" state

[a) = 3 (100) + [11) + [22) + [33))

However, given two copies of the two-qubit Bell state
[th2) = % (100) 4+ [11)), the two states |12) and |¢)4) are equivalent up
to relabelling.

1 1
[2) [th2) = 72 7

= 2 (100) 00} + 100} [11), + [11) 4100} +[11) 4 ]11)

(100) 4 + [11) ) —= (100) g + [11) )

Therefore under the identification scheme
00) 4 5 100, 101) 4 5 = (1), [10) 4 5 = 12), 111) 4 g = [3)¢
the above state "becomes"

[92) [1h2) = 5 (100) +[11) +[22) + [33))

M| —



Some notes about what we just did

1. This is good! (don’t quote me on this) since one can easily
prepare |1,)®" which in this view is "equivalent" to the
maximally entangled state in dimension 2" x 2".

2. We left some key details out. Qualitatively larger Hilbert spaces
are more "rich" so to speak. To have "high-dimensional
entanglement” (whatever this means) we must be able to perform
arbitrary local measurements (joint or otherwise).

3. Finally being able to implement arbitrary local transformations
on the four dimensional gate would also be nice.

4. Many different ways to try and quantify high-dimensional
entanglement (entanglement witnesses; Schmidt rank of a
system, etc.)



The scenario

For demonstration and intuition; we work with four-level systems
(ququarts). A general two-ququart entangled state can be written in
decomposition

3
) = 50100) 4 p+51[11) 4 p+52122) 4 p+53(33) 4 p where Z si=1

i=0
Question: Can we replace each ququart with two qubits so that your
total state can be considered a 4 qubit state as in the example we did
above. The first idea we have is to do what we did in the example
above simply; replace on Alice’s side |0) — |00), |1) — |01), |2) + |10)
and |3) — |11) and similarly for Bob. Then this replacement leaves us
with

W’> = 50 |00>A1,B1 ‘OO>A27BZ + 81 |OO>A1’Bl |11>A2’B2
+52 |11>A1,B1 ‘00>A2,B2 + 83 |11>A17Bl |11>A2’B2
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Approach and the result

Continuing what we had, we ask the conditions in which the state can
be written down as

lo) = (20 ]00) 4, p, +a1(11) 4, p,) ® (B0 |00) 4, p, + B1[11) 4, B,)
with a similar identification scheme we discussed above as in the
motivating example. If |¢)) can be written in this form, then it is said
to be decomposable; otherwise, it is called genuinely four-level
entangled. In order to decide decomposability for a general |1/), we
can compute the maximum overlap between [¢) and a general
decomposable state |p), i.e.

rr‘1a>x\ (Ylp) | = (rlnaﬁx (sofo + s1aoB1 + s201 B + sz fBr)
© i04

= max (B|S|a) = max singval(.9)

50

defining S = [
S2 83

81] and a = (ag,a1) "8 = (8o, B1) "
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Some results and generalizations

Theorem 3

The two ququart state |)) is decomposable if and only if max singval(S) = 1.

* A mixed state is decomposable iff o = > p; [1;) (;| where |);)
are decomposable and genuine four-level entangled otherwise.

* Convexity of the set of decomposable states allows one to
construct "witnesses" for four-level entanglement (Hahn-Banach
Separation Theorem).

* An entanglement witness WV is such that tr(oVV) > 0 for all
separable states and therefore tr(o)V) < 0 signals some sort of
genuine "multi-partite entanglement".

Example 1

A class of witnesses are the projector-based witnesses namely
W = al — [§)(]
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A final note on generalizations

1. In the setting of considering decomposition into 2-lower
dimensional states; the results from the previous section still hold
(the only difference is that the matrix S increases in dimension)

2. Now singular values depend on the encoding which thereby
determines on the Schmidt coefficients that occur in the matrix S.

Definition 2
An N-partite pure state ) € (CP)®V is fully-decomposable iff there
exist N-partite states ¢, ¢’ with dimension d, d’ such that

[) =U1®---®@Un(lp) ®|¢))
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Qudit universality
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A small universal gate set

Let U, be a d-dimensional transformation mapping a general qudit
state to |[d — 1), i.e.

d—1
Uq(ao, ..., d-1) Zaj |7) — |d = 1)
i=0
We claim that
Uy =Xy-1(ag—1,bq-1) ---Xi(a1,b1)
where a; = o; and b; = Z;;E a? and

Xi(a;, b)) =G [i—1,d—j — 1,arccos L
Vlal* + [b;]?

Additionally we define the d-dimensional phase gate Z, such that

d—1
Z4(0) = Z e!(1=sen(d=i=1)0 |5 (j| alters the phase of |d — 1) by
j=0
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Universal gate sets

Finally we define C5[R4] where R, is either X, or Z, as

I, 0
CalRy] = ( W Rd>

Theorem 4
The following gate set

I = {Xg4,Z4, Co[Ry]}

is universal for general quantum computation based on the circuit model.

Note here critically that universality in this setting implies addressing
n-qudit unitary operations in SU(d") as opposed to single-qudit
operations in SU(d). Let us denote the computational basis of n-qudit
space C%" as

|k) = k1 ... ky)

where k; ... k, is the base-d representation of k and
16



A proof sketch

Step 1: Eigen-decomposition of U
From the spectral theorem we can write U as

U= Ze“\J |E;)( E|-HZ€

j=1ls=1 g=il

where T; adds a phase of \; to the corresponding eigenstate and
leaves all the other eigenstates unchanged. Crucially,

-1
Y; =U;NZjNUjN
where U, n,Z; n are the N-dimensional analogues of Uy, Zy, i.e.
I.Ij,[\[(()é()7 co. ,Oln_l) : |E]> — |N — 1>

and
N-1

Z;nN = Z e!(1=lsgn(s=N+DDE |5y (5| alters the phase of |N — 1) by \;
s=0
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A proof sketch

Step 2: Controlled decomposition of U; y and Z; x
Similar to the decomposition of Uy, U; x can be decomposed in
terms of primitve gates X 1 (z,y). Finally Z; y = C,,[Z4()\;)] where

R, acts on the last d substates {|d — 1)®"! |4) }icin—1]- This controlled
qudit operation transforms the last qudit by applying R, conditional
on the first k qudits beingin |[d — 1,...,d — 1)

Step 3: Primitive decomposition of C,[Ry]

Can build a circuit using [ 2=2] auxiliary qudits, multiple
applications of C; and a final apphcatlon of Ry in order to replicate
the behavior of C,, [Ry]
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Future directions

* There seem to be subtle differences between decomposability
and separability; stuff I think that’s useful.

* Would like to understand the concept of Schmidt rank better and
its connection to the SVD (comes out of the singular value
decomposition, the coefficients that come out of a bipartite pure
state are treated as a "matrix".)

e It turns out that for bipartite systems of dimension 2 ® 2 and
2 ® 3; there is a necessary and sufficient condition for separability
(PPT condition).

* Would be nice if we could do universal qudit computation
without any auxiliary qudits; once we have bearings on this, can
start to think about the length of gate decomposition like for the
single qudit case.
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