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(Classical) Max-Cut

Figure 1: max cut is highlighted in red; size 5

• Goal: Given G = (V, E), find some S ⊆ V such that the partition
maximizes ∑

(i,j)∈E
zi∈{±1}

{1− zizj
2

}

• Intuitively, terms in the sum only have non-zero contribution
when zi ̸= zj, so the zi’s of the same sign identify the partition.

• Known to be NP-hard to obtain an exact solution :(
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Local Hamiltonians

• Given some G = (V, E) on n vertices, we can think of the vertices
as qubits where the edges of this ”interaction graph” describe
our local hamiltonian terms, i.e.

H =
∑

(u,v)∈E

Hu,v ⊗ IV\{u,v}

Goal: Find a quantum state |ψ⟩ ∈ (C2)⊗n that returns the
maximum/minimum energy or eigenvalue of H, i.e.

energy = ⟨ψ|H |ψ⟩

• One of the quantum analogues of classically well-understood
constraint satisfaction problems.
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(Quantum) Max-Cut

• Input: 2-local Hamiltonian,

H =
∑
(i,j)∈E

I− XiXj − YiYj − ZiZj
4

• Goal: Return λmax(H)

Why is this a generalization? Recall that in the classical problem, a
constraint had maximal energy when two corresponding entries
disagreed. So, what’s our quantum notion of ”disagreement”? From
the lovely algebraic identity

SWAPi,j =
I+ XiXj + YiYj + ZiZj

2 =⇒ Hi,j =
I− SWAPi,j

2

Exactly the anti-symmetric subspace! So energy is maximal when
SWAPi,j |ψ⟩ = − |ψ⟩
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Some more quantum intuition

H =
∑
(i,j)∈E

I− XiXj − YiYj − ZiZj
4

• The XiXj terms makes a measurement in the X basis.
• −1 if both are the same eigenstate, i.e. |++⟩ or |−−⟩.
• +1 if both are in differing eigenstates |−+⟩ , |+−⟩.

• In order to maximize, The YiYj term should be different in the Y
basis and similarly for the ZiZj term.

• Like classical max-cut but not just in the Z basis.

4



Some more quantum intuition

H =
∑
(i,j)∈E

I− XiXj − YiYj − ZiZj
4

• The XiXj terms makes a measurement in the X basis.
• −1 if both are the same eigenstate, i.e. |++⟩ or |−−⟩.
• +1 if both are in differing eigenstates |−+⟩ , |+−⟩.

• In order to maximize, The YiYj term should be different in the Y
basis and similarly for the ZiZj term.

• Like classical max-cut but not just in the Z basis.

4



Some more quantum intuition

H =
∑
(i,j)∈E

I− XiXj − YiYj − ZiZj
4

• The XiXj terms makes a measurement in the X basis.
• −1 if both are the same eigenstate, i.e. |++⟩ or |−−⟩.
• +1 if both are in differing eigenstates |−+⟩ , |+−⟩.

• In order to maximize, The YiYj term should be different in the Y
basis and similarly for the ZiZj term.

• Like classical max-cut but not just in the Z basis.

4



Approximation algorithms for QMC

• Product state algorithm that uses an SDP approach to obtain a
0.498 approximation by Gharibian and Parekh [2].

• Tensor product of one and two qubit states that achieves a 0.531
approximation ratio by Anshu, Gosset and Morenz [1].

• Parekh and Thompson provided a 0.533 approximation
algorithm in 2020 [6]

• The first algorithm to incorporate entanglement was due to King
in 2022 achieving an approximation ratio of 0.582 for
triangle-free graphs. [4]

• Finally Parekh and Lee provide a 0.595 matching-based
approximation algorithm [5]
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Our idea

Like Parekh and Lee, we look to maximum matching within graphs
and manage to improve their analysis to yield a 0.606-approximation
algorithm for quantum max-cut, and if the graph is promised to be
bipartite, we can guarantee a 0.75 approximation.

Crucially, the result for bipartite instances may be somewhat
surprising to folks (at least it was to me) since classically these are
the easiest instances of the problem.
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Bipartite instances and EPR

So about that bipartite guarantee...? First a short detour,

EPR =
∑
(i,j)∈E

I+ XiXj − YiYj + ZiZj
4 =

∑
(i,j)∈E

|Φ⟩⟨Φ|i,j

Why bother with this family of Hamiltonians? Well theoretically
interesting but also rotationally (unitarily) related to the original
max-cut Hamiltonian.

If G = (V0 ⊔ V1, E), then we can transform the EPR Hamiltonian into
the QMC Hamiltonian by rotating the qubits in V0 by Y, i.e.

(Y⊗ I)EPRi,j(Y⊗ I) = Hi,j

Turns out that the optimal product state for EPR is much friendlier
than QMC; with some work one can show that this is just |0⟩⊗n or
|1⟩⊗n
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Maximum Matching

Figure 2: Maximum matchings in three separate graphs

• A matching is defined to be a set of edges where no pair shares
an adjacent vertex. The maximum matching is just defined as
the largest such set in size. (Not to be confused with maximal
matchings).
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Linear program for Maximum Matching

maximize
∑
e∈E

Me

subject to
∑
j∈Γ(i)

Mi,j ≤ 1 for all i ∈ V (1)

∑
e∈E(S)

Me ≤ |S|−1
2 for all |S| odd (2)

Me ≥ 0 for all e ∈ E (3)

Let’s focus on the highlighted inequality. Why is it necessary?
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Odd cycles and integrality

(a) max matching for 5-cycle

1/2
1/2

1/2
1/2

1/
2

(b) optimal LP solution
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A first attempt

Something that might now seem natural is to do the following.

• Find a maximum matching M : E→ {0, 1}
• For all the edges in the maximum matching, place EPR pairs on
those edges. For an unmatched qubit, ”do nothing” or place I/2.
Define this state to be ρ′

• Return argmax
{|0⊗n⟩⟨0⊗n|,ρ′}

Tr(Hρ)

Energy of an edge: If Me = 1, and the edge is matched; then the
energy of our state ρ with respect to that edge is Tr(Heρ) = 1. What if
Me = 0? Then a partial trace argument provides that Tr(Heρ) = 1/4.
So putting this all together provides

Tr(Heρ) =
1
4 +

3Me
4
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”Fractionality” is scary but is it really?

That was great! But can we do without the scaling down? What if we
eliminated constraint 2 (the one forcing integrality), how much
harder does life get?

• Might seem daunting to eliminate constraint forcing integrality
since landscape of ”fractional solutions” could be massive.

• Life is simpler actually. If one denotes the optimal solution to
the LP as OPTf, then

Theorem
For any graph 2OPTf is an integer. Moreover there exists a fractional
matching that attains this value, i.e.∑

e∈E
f(e) = OPTf

where f(e) ∈ {0, 1/2, 1}. (The fractional matching polytope is
half-integral).
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Prelude to our algorithm

• So we have this linear program for maximum matching. it now
returns an assignment to edges that is no longer just {0, 1} but
{0, 1/2, 1}.

• It turns out one can completely characterize what the subgraph
of 1/2 edges look like.

• Just by virtue of the matching constraints, this subgraph has
bounded degree (≤ 2). What this means is that it just consists of
paths and cycles!

• Moreover the edges that span the cut between this 1/2
bad-subgraph and the good portion of the starting graph have
matching value 0.
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The punchline

So a natural algorithm to come up with here would be

• Find the maximum matching M : E→ {0, 1/2, 1}
• Put EPR pairs on all the edges in the matching
• ??? with edges inscribed by 1/2
• Return argmax

{|0⊗n⟩⟨0⊗n|,ρ′}
Tr(Hρ)

From the previous slide, we know that edges spanning the associated
cut have matching value 0, so just try optimizing separately.

Therefore sufficient to find ”high-energy” states on paths and cycles
that are encompassed in this bad subgraph.
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Paths are great

Question: What is the optimal eigenvector of the EPR Hamiltonian
for the path graph?

Answer: Turns out a high-energy state for the line is one that is
suggested by maximum matching if our input graph was just a line.
Obtain a maximum matching on the line, provided by alternating
edges of the line and place EPR pairs on them. This state has energy
5n/8 where n is the number of edges in the path.

This question is a little more complicated for the cycle...

In spirit, is similar to the one provided by the high-energy state on
the path. Need to take a few extra steps to ensure high energy since
we have an extra edge. But can obtain a state with the same energy
guarantee as the path.
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Proofs (sketches)



Level-2 SDP

Definition
(Level-2 Quantum Lasserre SDP)

maximize
∑
(i,j)∈E

1
4 · ⟨v(I), v(I)− v(XiXj)− v(YiYj)− v(ZiZj)⟩

subject to v(P) ∈ R|P2(n)| ∀P ∈ P2(n)
⟨v(P), v(P)⟩ = 1 ∀P ∈ P2(n)
⟨v(P1), v(Q1)⟩ = ⟨v(P2), v(Q2)⟩ P1Q1 = P2Q2
⟨v(P), v(Q)⟩ = 0 PQ = −QP
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A final note on SDP solution values

Let G = (V, E) be a graph. Let (v(P)P∈P2(n) be a feasible solution for
the SDP. Define further

Definition

gij :=
1
4 · ⟨v(I), v(I)− v(XiXj)− v(YiYj)− v(ZiZj)⟩

hij := gij −
1
2

In particular the objective value of the SDP solution is given by
ν =

∑
(i,j)∈E

gij.
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Monogamy of entanglement

Theorem
Given a feasible solution to the level-2 Lasserre SDP on G = (V, E),
then for all i, j, k ∈ V, then

h+ij + h+jk + h+ik ≤ 1/2

Theorem
Given a feasible solution to the level-2 SDP on a graph G = (V, E),
then for any vertex i ∈ V and any S ⊆ V,∑

j∈S

hij ≤ 1/2

and in particular ∑
j∈Γ(i)

h+ij ≤ 1/2
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Outline of a working strategy

Now, something beautiful happens, these solution vectors provided
by the SDP can exactly be interpreted as feasible solutions for the
linear program. Formally the vector (2h+ij ) satisfes the matching
constraint due to monogamy of entagelement on a star.
Non-negativity is built in by construction.

However, we don’t quite satisfy (2). Monogamy of entanglement on a
triangle tells us that we only satisfy constraint 2 for |S| = 3.

If we could figure out a way to make the h+ij ’s fully compliant with
constraint 2, would provide a feasible solution to the LP.
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Scaling down is the answer

Theorem
If (xe) satisfies constraints 1, 3 and 2 for |S| = 3, then ( 45xe) is feasible
for the matching LP.

Corollary
The vector ( 85h

+
ij ) is feasible for the matching LP.

So any SDP solution is ”almost feasible” for the linear program

The crucial insight is that we can now provide a lower bound on the
energy of our matching state simply by scaling down the SDP
solution and therefore obtain the optimal value to the problem by
writing it in terms or as some function of this SDP solution. (Useful
for computing the approximation ratio of our algorithm)
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Energy of the matching state (attempt 1)

It is now time to compute the energy of the Hamiltonian with respect
to the matching state. From the expression for the energy of an edge
w.r.t the state, we obtain.

Tr(Hρ) =
∑
e∈E

(
1
4 +

3
4Me

)
≥

∑
e∈E

(
1
4 +

6
5h

+
e

)
. . .

. . .

=⇒ Tr(Hρfinal) ≥ f(SDP) = η · SDP
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How do we deal with fractional edges

Before when writing down an expression for the energy, the
expression 1/4+ 3Me/4, it was crucial that Me ∈ {0, 1}. How do we
cope with Me = 1/2.

By our energy estimation, if S is the subgraph of edges with matching
value 1/2, then∑

C⊆S

5|C|
8 =

∑
C⊆S

|C|
(
1
4 +

3
4Me

)
=

∑
e∈S

(
1
4 +

3
4Me

)
It’s now smooth sailing from here. Denoting our solution vectors as
(2h+e )e∈E, since they are feasible for the LP, they must have energy at
most the optimal solution. Now

Tr(Hρ) ≥
∑
e∈E

(
1
4 +

3
4Me

)
≥

∑
e∈E

(
1
4 +

3
4 (2h

+
e )

)
. . .

=⇒ Tr(Hρfinal) ≥ 0.75 · SDP
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Some Open Questions

• Can we find a quantum approximation algorithm that does
better for QMC and EPR respectively?

• Goemans-Williamson is optimal upto the Unique Games
Conjecture. A work by Hwang, Neeman, Parekh, Thompson and
Wright [3] demonstrates hardness of approximation to within a
factor of 0.956 assuming a conjecture in Gaussian geometry. Can
we refine these conditional hardness results?

• Can we demonstrate QMA-hardness of approximation?
• Big outstanding problem on the hardness of the EPR
hamiltonian, hasn’t shown to be QMA or even NP-hard.
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Thanks!



Questions?
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A primer on SDPs



Goemans-Williamson

Recall that in classical max-cut, the goal was to optimize∑
(i,j)∈E
xi∈{±1}

1− xixj
2

This was NP-hard so can’t optimize over this efficiently.

Let’s relax this instead. Try solving

∑
(i,j)∈E
∥xi∥=1

1− ⟨xi, xj⟩
2

Question: Why is this a relaxation?

Answer: Suffices to take xi = (xi, 0, . . . , 0).
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Goemans-Williamson

• Compute the optimal SDP vectors specified by the xi’s on the
previous slide.

• Remains to round each of these xi’s to a random sign {±1}. We
do so as follows

• Pick a random r = (r1, . . . , rn) where ri ∼ N (0, 1).
• Finally set the answer to be the vector g where

gi = sign(⟨r, xi⟩)

Theorem
Goemans-Williamson achieves a 0.878 approximation to Max-Cut.
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Gharibian-Parekh

Back to Quantum Max-Cut. How do we write the SDP for QMC. It’s
actually a bit complicated, but after simplifying, we obtain

QMCSDP(G) =
∑
(i,j)∈E

1− 3⟨vi, vj⟩
4

Looks very similar to the original original Max-Cut SDP! How do we
round?

• Compute solution vectors from the SDP (vi)
• ”Round this” into a Bloch-sphere assignment

• Initialize a random 3-dimensional projector Π ∈ R3×n

• Set for all i ∈ V,
ui = Πvi/∥Πvi∥

• Our final state is a product state of ρi’s where

ρi =
1
2 (I+ ui,1X+ ui,2Y+ ui,3Z)
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