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Preliminaries and some background
Question

Given that we have a quantum state  and a unitary matrix  , can living in a larger Hilbert
space can help us describe a significantly larger set of unitary evolutions?

Definition
A qu it is a quantum version of -ary digits where the state can be described by a vector in a -

dimensional  Hilbert space. The basis vectors are denoted by , and the state of a
qudit has the general form

An example when  is the uniform superposition of  and , i.e. 

∣ψ⟩ ∈ Cd U ∈ Cd×d

(d) d d
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Preliminaries and some background
Definition

A Givens rotation is represented by a matrix of the form

where  and . Here  but generalizations to  can be made. Intuitively, a
Givens rotation is a rotation between the -th and -th axes in the overarching -dimensional Hilbert space

.
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The actual problem of universality
Theorem

 is orthonormal and its
generalizations with complex valued entries
are unitary, i.e. 

Since “orthonormality” is
preserved under taking products,

a corollary of this is that the
product of  Givens rotations is

also unitary.

Goal
Given any , can we write  down as a
product of rotations acting on a -dimensional subspace
of , i.e. 

As it turns out yes, we can! There exists
something known as the QR

decomposition where a matrix can be
decomposed into a productx of

orthogonal and upper triangular matrices
and it turns out the Givens rotations are

the building blocks of this decomposition.

G(i, j, θ)

G G =† GG =† I

d

U ∈ Cd×d U
2

Hd

U = U ​U ​ ⋯U ​i ​,j ​1 1 i ​,j ​2 2 i ​,j ​k k
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A sketch of universality
Fact

Any unitary  can be written as

where  is a product of  Givens rotations and  is a diagonal matrix

Proof: The intuition here is that pre-multiplying on the left of  by an
appropriate Givens rotation that for some  zeroes out those specific

entry. Note we only need to consider the matrix entries of  corresponding to
the -th and -th columns (since the rest of the columns are unaffected by the

rotation). Indeed, we let  be the the block-matrix that gets
affected by the Givens rotation.

U ∈ Cd×d

U = QR

Q d R

U
(i, j)

U
i j

U ​ ∈i,j R2×2

​ ​ ​ =[ c

−s

s

c
] [u ​i,i

u ​j,i

ui,j
u ​j,j

] ​ ​[r ​i,i

0
ri,j
r ​j,j

]
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An end to universality
The above matrix equality gives us a set of four equations namely

Solving the above set of equations and noting that  in order to
preserve orthonormality of , we obtain some familiar looking formulas for

 namely

Time-complexity

For any , we may get unlucky and have to single out every single entry below the main diagonal; which requires

ca ​ +i,i sa ​ =j,i r ​ and ca ​ +i,i i,j sa ​ =j,j r ​i,j

−sa ​ +i,i ca ​ =j,i 0 and − sa ​ +i,j ca ​ =j,j r ​j,j

c +2 s =2 1
Q

c, s

c = ​ and s =
​a ​ + a ​i,i

2
j,i
2

a ​i,i
​

​a ​ + a ​i,i
2

j,i
2

a ​j,i

U ∈ Cd×d

​i =
i=1

∑
d−1

​ =
2

d(d − 1)
​ ∈(

2
d) O(d )2

8



Connectivity Graphs and toy architectures
Definition

For a qu( )it, we can define a connectivity
graph where each node represents a level of
the qudit and the edges represent the
possible transitions between the levels.

Algorithm

1. input: , 

2. decompose: Generate the set of required givens rotations

such that 

3. augmentation : For each 

if , do nothing

else find shortest path between  and 

4. return: 

Following some motivation via the 
ion trap and some other trapped ion

designs, we consider the following toy
architectures:

d

U ∈ Cd×d G = (V ,E)

R = {G ​ ∈i,j C ∣d×d 2 ≤ i < j ≤ d − 1}

G ​ …G ​U =2,1 d,d−1 R

G ​i,j

(i, j) ∈ E

i j

(i, v ​, … , v ​, v ​, j)1 k−1 k

G ​ =i,j S ​ … S ​G ​S ​ … S ​i,v ​1 v ​,v ​k−1 k v ​,jk v ​,v ​k−1 k i,v ​1

S ​,G ​,Rℓ,m v ​,jk

Ca40 +
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Graph decomposition lengths
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An experimental error-model
Each givens rotation can be written as  for some hermitian  and

some angle . Since we’ve dealt with decomposition length we can now focus
on primaryily fidelity. Assume that physically we can realize each givens
rotation with some rotation angle error namely . More

concretely let  be the decomposition length of the unitary that we’d like to
implement, thereby giving us

exp(iθH) H
θ

exp(i(θ + δ)H)
k

U ​ =ideal ​ exp(iθ ​H ​) =
i=1

∏
k

i i ​U ​

i=1

∏
k

i

U ​ =ion ​ exp(i(θ ​ +
i=1

∏
k

i δ ​)H ​) =i i ​ exp(iθ ​H ​) exp(iδ ​H ​) =
i=1

∏
k

i i i i ​U ​E ​

i=1

∏
k

i i
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An experimental error-model
Given some arbitary starting state , we have that∣ψ⟩ ∈ Cd

​ ​

F = ​ ⟨ψ∣U ​U ​ ∣ψ⟩ ​ = ​ ⟨ψ∣ ​U ​ ​U ​E ​ ∣ψ⟩ ​

∣

∣
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∣
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†
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∏
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j j)
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∣
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j
∣

∣

∣
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∑
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∣

∣
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∣

∣

= ​ ⟨ψ∣ cos(kδ ​)I+ i sin(kδ ​)H ​ ∣ψ⟩ ​ ≈ 1 − ​k δ ​

∣

∣
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∣

∣ (
2
1 2
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Errors in a quantum computation build linearly
Definition

Given two quantum states  in terms of their density matrices, their trace distance is defined as

where the supremum is over all  unitary matrices and the absolute value of a matrix is defined as the
matrix with the same entries as the original matrix but with all entries replaced by their absolute values.

Let  be a sequence of unitary operators; each representing
the ideal unitary operator at time . Let  be the noisy

approximations to  that we actually implement.

ρ,σ

∣∣ρ − σ∣∣ ​ =tr ​ ​ trace ​UρU −UσU ​

2
1

U∈Cn×n

sup ∣∣
† †

∣∣

n × n

U ​,U ​, … ,U ​1 2 T

t V ​,V ​, … ,V ​1 2 T

U ​i
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Errors in a quantum computation build linearly
Theorem

Suppose  for all  and mixed states . Then

Proof
We argue for the case .

The general case easily follows by induction.

∣∣U ​ρU ​ −i i
† V ​ρV ​∣∣ ​ ≤i i

†
tr ε i ρ

∣∣U ​ …U ​ρU ​ …U ​ −T 1 1
†

T
† V ​ …V ​ρV ​ …V ​∣∣ ​ ≤T 1 1

†
T
†

tr εT

T = 2

​ ​

∣∣U ​U ​ρU ​U ​ −V ​V ​ρV ​V ​∣∣ ​2 1 1
†

2
†

2 1 1
†

2
†

tr = ∣∣U ​U ​ρU ​U ​ −V ​U ​ρU ​V ​ +V ​U ​ρU ​V ​ −V ​V ​ρV ​V ​∣∣ ​2 1 1
†

2
†

2 1 1
†

2
†

2 1 1
†

2
†

2 1 1
†

2
†

tr

≤ ∣∣U ​ ​U ​ −V ​ ​V ​∣∣ ​ + ∣∣V ​U ​ρU ​V ​ −V ​V ​ρV ​V ​∣∣ ​2

ρ′

​U ​ρU ​1 1
†

2
†

2

ρ′

​U ​ρU ​1 1
†

2
†

tr 2 1 1
†

2
†

2 1 1
†

2
†

tr

≤ ∣∣U ​ρU ​ −V ​ρV ​∣∣ ​ + ∣∣V ​(U ρU ​ −V ​ρV ​)V ​∣∣ ​2
′

2
†

2
′

2
†

tr 2 1 1
†

1 1
†

2
†

tr

= ∣∣U ​ρU ​ −V ​ρV ​∣∣ ​ + ∣∣U ​ρU ​ −V ​ρV ​∣∣ ​2
′

2
†

2
′

2
†

tr 1 1
†

1 1
†

tr

≤ 2ε
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Details that were swept under the rug
Baker-Campbell-Hausdorff formula

Given two matrices , the Baker-Campbell-Hausdorff formula gives us a value for  that solves the equation;
 for possible non-commuting . The formula is given by

For two givens rotations , the commutator is given by

, : 

, : 

: 

A,B C

exp(A) exp(B) = exp(C) A,B

C = A+B+ ​[A,B] +
2
1

​[A, [A,B]] −
12
1

​[B, [A,B]] +
12
1

⋯

G(i, j),G(k, l)

i = k j = l [G(i, j),G(k, l)] = 0

i = k j = l [G(i, j),G(k, l)] = 0

j = k [G(i, j),G(j, l)] = G (i, l)′
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