
Error estimates and asymptotic analysis for exact qudit
universality
Lukshya Ganjoo

University of Washington

2024-05-17

lganjoo@uw.edu

1

mailto:lganjoo@uw.edu


Error estimates and asymptotic analysis
for exact qudit universality

  Lukshya Ganjoo
Sara Mouradian, Vikram Kashyap

2



Overview
1. 
2. 

3. 

4. 
5. 
6. 

Preliminaries and some background
The actual problem of universality

A sketch of universality
An end to universality

Connectivity graphs and toy architectures
Graph decomposition lengths!!

An experimental error-model
Errors in a quantum computation build linearly
Extras

3



Preliminaries and some background
Question

Given that we have a quantum state  and a unitary matrix  , can living in a larger Hilbert
space can help us describe a signi�cantly larger set of unitary evolutions?

Definition
A qu it is a quantum version of -ary digits where the state can be described by a vector in a -

dimensional  Hilbert space. The basis vectors are denoted by , and the state of a
qudit has the general form

An example when  is the uniform superposition of  and , i.e. 

∣ψ⟩ ∈ Cd U ∈ Cd×d

(d) d d
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 2

1
( )

4



Preliminaries and some background
Definition

A Givens rotation is represented by a matrix of the form

where  and . Here  but generalizations to  can be made. Intuitively, a
Givens rotation is a rotation between the -th and -th axes in the overarching -dimensional Hilbert space

.
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⎣
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The actual problem of universality
Theorem

 is orthonormal and its
generalizations with complex valued entries
are unitary, i.e. 

Since “orthonormality” is
preserved under taking products,

a corollary of this is that the
product of  Givens rotations is

also unitary.

Goal
Given any , can we write  down as a
product of rotations acting on a -dimensional subspace
of , i.e. 

As it turns out yes, we can! There exists
something known as the QR

decomposition where a matrix can be
decomposed into a productx of

orthogonal and upper triangular matrices
and it turns out the Givens rotations are

the building blocks of this decomposition.

G(i, j, θ)

G G =† GG =† I

d

U ∈ Cd×d U
2

Hd

U = U  U  ⋯U  i  ,j  1 1 i  ,j  2 2 i  ,j  k k
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A sketch of universality
Fact

Any unitary  can be written as

where  is a product of  Givens rotations and  is a diagonal matrix

Proof: The intuition here is that pre-multiplying on the left of  by an
appropriate Givens rotation that for some  zeroes out those speci�c

entry. Note we only need to consider the matrix entries of  corresponding to
the -th and -th columns (since the rest of the columns are unaffected by the

rotation). Indeed, we let  be the the block-matrix that gets
affected by the Givens rotation.

U ∈ Cd×d

U = QR

Q d R

U
(i, j)

U
i j

U  ∈i,j R2×2

   =[ c

−s

s

c
] [u  i,i

u  j,i

ui,j
u  j,j

]   [r  i,i

0
ri,j
r  j,j

]
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An end to universality
The above matrix equality gives us a set of four equations namely

Solving the above set of equations and noting that  in order to
preserve orthonormality of , we obtain some familiar looking formulas for

 namely

Time-complexity

For any , we may get unlucky and have to single out every single entry below the main diagonal; which requires

ca  +i,i sa  =j,i r  and ca  +i,i i,j sa  =j,j r  i,j

−sa  +i,i ca  =j,i 0 and − sa  +i,j ca  =j,j r  j,j

c +2 s =2 1
Q

c, s

c =  and s =
 a  + a  i,i

2
j,i
2

a  i,i
 

 a  + a  i,i
2

j,i
2

a  j,i

U ∈ Cd×d

 i =
i=1

∑
d−1

 =
2

d(d − 1)
 ∈(

2
d) O(d )2
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Connectivity Graphs and toy architectures
Definition

For a qu( )it, we can de�ne a connectivity
graph where each node represents a level of
the qudit and the edges represent the
possible transitions between the levels.

Algorithm

1. input: , 

2. decompose: Generate the set of required givens rotations

such that 

3. augmentation : For each 

if , do nothing

else �nd shortest path between  and 

4. return: 

Following some motivation via the 
ion trap and some other trapped ion

designs, we consider the following toy
architectures:

d

U ∈ Cd×d G = (V ,E)

R = {G  ∈i,j C ∣d×d 2 ≤ i < j ≤ d − 1}

G  …G  U =2,1 d,d−1 R

G  i,j

(i, j) ∈ E

i j

(i, v  , … , v  , v  , j)1 k−1 k

G  =i,j S  … S  G  S  … S  i,v  1 v  ,v  k−1 k v  ,jk v  ,v  k−1 k i,v  1

S  ,G  ,Rℓ,m v  ,jk

Ca40 +
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Graph decomposition lengths
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An experimental error-model
Each givens rotation can be written as  for some hermitian  and

some angle . Since we’ve dealt with decomposition length we can now focus
on primaryily �delity. Assume that physically we can realize each givens
rotation with some rotation angle error namely . More

concretely let  be the decomposition length of the unitary that we’d like to
implement, thereby giving us

exp(iθH) H
θ

exp(i(θ + δ)H)
k

U  =ideal  exp(iθ  H  ) =
i=1

∏
k

i i  U  

i=1

∏
k

i

U  =ion  exp(i(θ  +
i=1

∏
k

i δ  )H  ) =i i  exp(iθ  H  ) exp(iδ  H  ) =
i=1

∏
k

i i i i  U  E  

i=1

∏
k

i i
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An experimental error-model
Given some arbitary starting state , we have that∣ψ⟩ ∈ Cd

  

F =  ⟨ψ∣U  U  ∣ψ⟩  =  ⟨ψ∣  U   U  E  ∣ψ⟩  

∣

∣
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∣
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†

(
j=1

∏
k

j j)
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∣
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∣
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=  ⟨ψ∣ exp i ⋅ kδ  ⋅ H  ∣ψ⟩  

∣

∣
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∣

∣

=  ⟨ψ∣ cos(kδ  )I+ i sin(kδ  )H  ∣ψ⟩  ≈ 1 −  k δ  

∣

∣
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∣

∣ (
2
1 2
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Errors in a quantum computation build linearly
Definition

Given two quantum states  in terms of their density matrices, their trace distance is de�ned as

where the supremum is over all  unitary matrices and the absolute value of a matrix is de�ned as the
matrix with the same entries as the original matrix but with all entries replaced by their absolute values.

Let  be a sequence of unitary operators; each representing
the ideal unitary operator at time . Let  be the noisy

approximations to  that we actually implement.

ρ,σ

∣∣ρ − σ∣∣  =tr   trace  UρU −UσU  

2
1

U∈Cn×n

sup ∣∣
† †

∣∣

n × n

U  ,U  , … ,U  1 2 T

t V  ,V  , … ,V  1 2 T

U  i
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Errors in a quantum computation build linearly
Theorem

Suppose  for all  and mixed states . Then

Proof
We argue for the case .

The general case easily follows by induction.

∣∣U  ρU  −i i
† V  ρV  ∣∣  ≤i i

†
tr ε i ρ

∣∣U  …U  ρU  …U  −T 1 1
†

T
† V  …V  ρV  …V  ∣∣  ≤T 1 1

†
T
†

tr εT

T = 2

  

∣∣U  U  ρU  U  −V  V  ρV  V  ∣∣  2 1 1
†

2
†

2 1 1
†

2
†

tr = ∣∣U  U  ρU  U  −V  U  ρU  V  +V  U  ρU  V  −V  V  ρV  V  ∣∣  2 1 1
†

2
†

2 1 1
†

2
†

2 1 1
†

2
†

2 1 1
†

2
†

tr

≤ ∣∣U   U  −V   V  ∣∣  + ∣∣V  U  ρU  V  −V  V  ρV  V  ∣∣  2

ρ′

 U  ρU  1 1
†

2
†

2

ρ′

 U  ρU  1 1
†

2
†

tr 2 1 1
†

2
†

2 1 1
†

2
†

tr

≤ ∣∣U  ρU  −V  ρV  ∣∣  + ∣∣V  (U ρU  −V  ρV  )V  ∣∣  2
′

2
†

2
′

2
†

tr 2 1 1
†

1 1
†

2
†

tr

= ∣∣U  ρU  −V  ρV  ∣∣  + ∣∣U  ρU  −V  ρV  ∣∣  2
′

2
†

2
′

2
†

tr 1 1
†

1 1
†

tr

≤ 2ε
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Details that were swept under the rug
Baker-Campbell-Hausdorff formula

Given two matrices , the Baker-Campbell-Hausdorff formula gives us a value for  that solves the equation;
 for possible non-commuting . The formula is given by

For two givens rotations , the commutator is given by

, : 

, : 

: 

A,B C

exp(A) exp(B) = exp(C) A,B

C = A+B+  [A,B] +
2
1

 [A, [A,B]] −
12
1

 [B, [A,B]] +
12
1

⋯

G(i, j),G(k, l)

i = k j = l [G(i, j),G(k, l)] = 0

i = k j = l [G(i, j),G(k, l)] = 0

j = k [G(i, j),G(j, l)] = G (i, l)′
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