Error estimates and asymptotic analysis for exact qudit universality

Lukshya Ganjoo lganjoo@uw.edu

University of Washington

2024-05-17

Error estimates and asymptotic analysis for exact qudit universality

Lukshya Ganjoo Sara Mouradian, Vikram Kashyap

Overview

- 1. Preliminaries and some background
- 2. The actual problem of universality
	- A sketch of universality
	- An end to universality
- 3. Connectivity graphs and toy architectures
	- Graph decomposition lengths!!
- 4. An experimental error-model
- 5. Errors in a quantum computation build linearly
- 6. Extras

Preliminaries and some background

Question

Given that we have a quantum state $\ket{\psi}\in\mathbb{C}^d$ and a unitary matrix $\mathbf{U}\in\mathbb{C}^{d\times d}$, can living in a larger Hilbert space can help us describe a significantly larger set of unitary evolutions?

Definition

A qu (d) it is a quantum version of d -ary digits where the state can be described by a vector in a d dimensional $\mathcal H_d$ Hilbert space. The basis vectors are denoted by $\ket{0},\ket{1},\cdots,\ket{d-1}$, and the state of a qudit has the general form

$$
|\psi\rangle = \sum_{i=0}^{d-1} \alpha_i \, |i\rangle \in \mathbb{C}_d \text{ and } \sum_{i=0}^{d-1} |\alpha_i|^2 = 1
$$

An example when $d=1$ is the uniform superposition of 1 and 0 , i.e.

$$
\ket{\psi} = \frac{1}{\sqrt{2}}\left(\ket{0} + \ket{1}\right)
$$

Preliminaries and some background

Definition

A Givens rotation is represented by a matrix of the form

$$
\mathbf{G}(i,j,\theta) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & c & \cdots & -s & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & s & \cdots & c & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & s & \cdots & c & \cdots & 0 \end{bmatrix}
$$

 w here $c=\cos(\theta)$ and $s=\sin(\theta).$ Here $c,s\in\mathbb{R}$ but generalizations to $c,s\in\mathbb{C}$ can be made. Intuitively, a Givens rotation is a rotation between the i -th and j -th axes in the overarching d -dimensional Hilbert space $\mathcal{H}^d.$

The actual problem of universality

Theorem

 $\mathbf{G}(i, j, \theta)$ is orthonormal and its generalizations with complex valued entries are unitary, i.e.

 $\mathbf{G}^{\dagger} \mathbf{G} = \mathbf{G} \mathbf{G}^{\dagger} = \mathbf{I}$

Since "orthonormality" is preserved under taking products, a corollary of this is that the product of d Givens rotations is also unitary.

Goal

Given any $\mathbf{U} \in \mathbf{C}^{d \times d}$, can we write \mathbf{U} down as a product of rotations acting on a 2 -dimensional subspace of \mathcal{H}^d , i.e.

$$
\mathbf{U}=\mathbf{U}_{i_1,j_1}\mathbf{U}_{i_2,j_2}\cdots \mathbf{U}_{i_k,j_k}
$$

As it turns out yes, we can! There exists something known as the **QR decomposition** where a matrix can be decomposed into a productx of orthogonal and upper triangular matrices and it turns out the Givens rotations are the building blocks of this decomposition.

A sketch of universality

Fact

Any unitary $\mathbf{U} \in \mathbf{C}^{d \times d}$ can be written as

 $\overline{\mathbf{U}} = \overline{\mathbf{Q}} \mathbf{R}$

where $\mathbf Q$ is a product of d Givens rotations and $\mathbf R$ is a diagonal matrix

Proof: The intuition here is that pre-multiplying on the left of U by an appropriate Givens rotation that for some $\left(i,j\right)$ zeroes out those specific entry. Note we only need to consider the matrix entries of $\mathbf U$ corresponding to the i -th and j -th columns (since the rest of the columns are unaffected by the rotation). Indeed, we let $\mathbf{U}_{i,j} \in \mathbb{R}^{2 \times 2}$ be the the block-matrix that gets affected by the Givens rotation.

$$
\begin{bmatrix}c & s\\-s & c\end{bmatrix}\begin{bmatrix}u_{i,i} & u_{i,j}\\u_{j,i} & u_{j,j}\end{bmatrix}=\begin{bmatrix}r_{i,i} & r_{i,j}\\0 & r_{j,j}\end{bmatrix}
$$

An end to universality

The above matrix equality gives us a set of four equations namely

$$
\begin{array}{ccc} ca_{i,i}+sa_{j,i}=r_{i,i} & \text{and} & ca_{i,j}+sa_{j,j}=r_{i,j} \\ -sa_{i,i}+ca_{j,i}=0 & \text{and} & -sa_{i,j}+ca_{j,j}=r_{j,j} \end{array}
$$

Solving the above set of equations and noting that $c^2 + s^2 = 1$ in order to preserve orthonormality of $\mathbf Q$, we obtain some familiar looking formulas for c,s namely

$$
c = \frac{a_{i,i}}{\sqrt{a_{i,i}^2 + a_{j,i}^2}} \quad \text{and} \quad s = \frac{a_{j,i}}{\sqrt{a_{i,i}^2 + a_{j,i}^2}}
$$

Time-complexity For any $\bf{U}\in\bf{C}^{d\times d}$, we may get unlucky and have to single out every single entry below the main diagonal; which requires $i =$ *i*=1 $\sum i$ *d*−1 $\frac{d(d-1)}{2} = \binom{d}{2} \in \mathcal{O}(d^2)$

Connectivity Graphs and toy architectures

Definition

For a qu (d) it, we can define a connectivity graph where each node represents a level of the qudit and the edges represent the possible transitions between the levels.

Algorithm

- 1. input: $\mathbf{U} \in \mathbb{C}^{d \times d}$, $\mathcal{G} = (V, E)$
- 2. decompose: Generate the set of required givens rotations

 $\mathcal{R} = \{\mathbf{G}_{i,j} \in \mathbb{C}^{d \times d} \mid 2 \leq i < j \leq d-1\}$

 \mathbf{S} such that $\mathbf{G}_{2,1} \ldots \mathbf{G}_{d,d-1} \mathbf{U} = \mathbf{R} \mathbf{U}$

- 3. augmentation : For each **G***i*,*^j*
	- $\texttt{if}~(i, j) \in E$, do nothing
	- $\mathsf{else} \mathbin{\mathsf{find}} \mathbin{\mathsf{s}}$ hortest path between i and j $(i, v_1, \ldots, v_{k-1}, v_k, j)$

$$
\mathbf{G}_{i,j} = \mathcal{S}_{i,v_1} \ldots \mathcal{S}_{v_{k-1},v_k} \mathbf{G}_{v_k,j} \mathcal{S}_{v_{k-1},v_k} \ldots \mathcal{S}_{i,v_1}
$$

4. return: $\mathcal{S}_{\ell,m}, \mathbf{G}_{v_k,j}, \mathbf{R}$

Following some motivation via the ${}^{40}\mathrm{Ca}^+$ ion trap and some other trapped ion designs, we consider the following toy architectures:

Graph decomposition lengths

An experimental error-model

Each givens rotation can be written as $\exp(i\theta \mathbf{H})$ for some hermitian \mathbf{H} and $\mathop{\mathsf{some}}$ angle $\theta.$ Since we've dealt with decomposition length we can now focus on primaryily fidelity. Assume that physically we can realize each givens rotation with some rotation angle error namely $\exp(i(\theta + \delta) \mathbf{H})$. More concretely let k be the decomposition length of the unitary that we'd like to implement, thereby giving us

$$
\mathbf{U}_{\text{ideal}} = \prod_{i=1}^k \exp(i\theta_i \mathbf{H_i}) = \prod_{i=1}^k \mathbf{U}_i
$$

 $\mathbf{U}_{\text{ion}} = \prod \exp(i(\theta_i + 1))$ $i=1$ *k* $\delta_i + \delta_i) \mathbf{H}_i) = \prod \exp(i\theta_i \mathbf{H}_i) \exp(i\delta_i \mathbf{H}_i) = 0$ $i=1$ *k* $i_{i} \mathbf{H}_{i}) \exp (i \delta_{i} \mathbf{H}_{i}) = \prod \mathbf{U}_{i} \mathcal{E}_{i}$ $i=1$ *k* i ${\cal C}i$

An experimental error-model

Given some arbitary starting state $\ket{\psi}\in\mathbb{C}^{d}$, we have that

$$
\mathcal{F} = \left| \bra{\psi} \mathbf{U}_{\text{ideal}}^{\dagger} \mathbf{U}_{\text{ion}} \ket{\psi} \right| = \left| \bra{\psi} \left(\prod_{j=1}^{k} \mathbf{U}_{j} \right)^{\dagger} \left(\prod_{j=1}^{k} \mathbf{U}_{j} \mathcal{E}_{j} \right) \ket{\psi} \right| \\ \geq \left| \bra{\psi} \prod_{j=1}^{k} \mathcal{E}_{j} \ket{\psi} \right| \geq \left| \bra{\psi} \exp \left(i \cdot \sum_{j=1}^{k} \delta_{j} \cdot \mathbf{H}_{j} \right) \ket{\psi} \right| \\ = \left| \bra{\psi} \exp \left(i \cdot k \delta_{\text{avg}} \cdot \mathcal{H}_{\text{avg}} \right) \ket{\psi} \right| \\ = \left| \bra{\psi} \cos(k \delta_{\text{avg}}) \mathbf{I} + i \sin(k \delta_{\text{avg}}) \mathcal{H}_{\text{avg}} \ket{\psi} \right| \approx \left(1 - \frac{1}{2} k^{2} \delta_{\text{avg}}^{2} \right)
$$

Errors in a quantum computation build linearly

Definition

Given two quantum states ρ, σ in terms of their density matrices, their trace distance is defined as

$$
||\rho - \sigma||_{\text{tr}} = \frac{1}{2} \sup_{\mathbf{U} \in \mathbb{C}^{n \times n}} \text{trace} \left| \mathbf{U} \rho \mathbf{U}^{\dagger} - \mathbf{U} \sigma \mathbf{U}^{\dagger} \right|
$$

where the supremum is over all $n\times n$ unitary matrices and the absolute value of a matrix is defined as the matrix with the same entries as the original matrix but with all entries replaced by their absolute values.

Let $\mathbf{U}_1, \mathbf{U}_2, \ldots, \mathbf{U}_T$ be a sequence of unitary operators; each representing the ideal unitary operator at time t . Let $\mathbf{V}_1, \mathbf{V}_2, \ldots, \mathbf{V}_T$ be the noisy approximations to $\mathbf{U_{i}}$ that we actually implement.

Errors in a quantum computation build linearly

Theorem

 \sup Suppose $||\mathbf{U}_i\rho\mathbf{U}_i^\dagger - \mathbf{V}_i\rho\mathbf{V}_i^\dagger||_{\text{tr}} \leq \varepsilon$ for all i and mixed states ρ . Then

$$
||\mathbf{U}_T \ldots \mathbf{U}_1 \rho \mathbf{U}_1^\dagger \ldots \mathbf{U}_T^\dagger - \mathbf{V}_T \ldots \mathbf{V}_1 \rho \mathbf{V}_1^\dagger \ldots \mathbf{V}_T^\dagger||_{\text{tr}} \leq \varepsilon T
$$

Proof We argue for the case $T=2.$ $||\mathbf{U}_2\mathbf{U}_1\rho\mathbf{U}_1^\dagger\mathbf{U}_2^\dagger-\mathbf{V}_2\mathbf{V}_1\rho\mathbf{V}_1^\dagger\mathbf{V}_2^\dagger||_2$ 2 † 2 V 1 ρ V $_1^+$ † 2 $\frac{1}{2}||_{\text{tr}} = ||\mathbf{U}_2\mathbf{U}_1\rho\mathbf{U}_1^\dagger\mathbf{U}_2^\dagger - \mathbf{V}_2\mathbf{U}_1\rho\mathbf{U}_1^\dagger\mathbf{V}_2^\dagger + \mathbf{V}_2\mathbf{U}_1\rho\mathbf{U}_1^\dagger\mathbf{V}_2^\dagger - \mathbf{V}_2\mathbf{V}_1\rho\mathbf{V}_1^\dagger\mathbf{V}_2^\dagger||_{\text{tr}}$ 2 † $_2$ U $_1$ ρ U $_1^{\prime}$ † 2 † $_2$ U $_1$ ρ U $_1^{\prime}$ † 2 † 2 V 1 ρ V $_1^+$ † 2 † tr $\leq ||\mathbf{U}_2\mathbf{U}_1\rho\mathbf{U}_1^\dagger\mathbf{U}_2^\dagger-\mathbf{V}_2\mathbf{U}_1\rho\mathbf{U}_1^\dagger\mathbf{V}_2^\dagger||_{\mathrm{tr}}+||\mathbf{V}_2\mathbf{U}_1\rho\mathbf{U}_1^\dagger\mathbf{V}_2^\dagger-\mathbf{V}_2\mathbf{V}_1\rho\mathbf{V}_1^\dagger\mathbf{V}_2^\dagger||_{\mathrm{tr}}$ *ρ* ′ *ρ* ′ 2 † $_{2}$ U $_{1}\rho$ U $_{1}^{\dagger}$ 2 † $_{\rm tr}$ + || **v** 2 $\mathbf{U}_1 \rho \mathbf{U}_1^{\mathsf{T}}$ † 2 † 2 V 1 ρ V $_1^+$ † 2 † tr $\leq ||\mathbf{U}_2\mathbf{\rho}'\mathbf{U}_2^\dagger-\mathbf{V}_2\mathbf{\rho}'\mathbf{V}_2^\dagger||_{\mathrm{tr}}+||\mathbf{V}_2(\mathbf{U}_1\mathbf{\rho}\mathbf{U}_1^\dagger-\mathbf{V}_1\mathbf{\rho}\mathbf{V}_1^\dagger)\mathbf{V}_2^\dagger||_{\mathrm{tr}}$ 2 † 2 ′ 2 † $_{\rm tr}$ + || **v** ₂(**U**₁ ρ **U**₁ † $1 \rho \mathbf{v}_1$ † 2 † tr $= ||\mathbf{U}_{2}\rho'\mathbf{U}_{2}^{\dagger} - \mathbf{V}_{2}\rho'\mathbf{V}_{2}^{\dagger}||_{\mathrm{tr}} + ||\mathbf{U}_{1}\rho\mathbf{U}_{1}^{\dagger} - \mathbf{V}_{1}\rho\mathbf{V}_{1}^{\dagger}||_{\mathrm{tr}}$ 2 † 2 ′ 2 † $_{\rm tr}$ + $||$ U₁ ρ U₁ † $10 \mathbf{v}_1$ † tr $< 2\varepsilon$

The general case easily follows by induction.

Thank you and acknowledgements

- - \blacksquare link to [github](https://github.com/lukshyaganjoo)
	- **[reach](mailto:lganjoo@uw.edu) out!**
	- **•** [website](https://lukshyaganjoo.github.io/)
- Personal links: **•** Huge thank you to:
	- Sara Mouradian
	- Vikram Kashyap
	- **Scalable quantum research lab**
	- Sam Foreman for his [wonderful](https://samforeman.me/qmd/dope-slides/) \blacksquare [template](https://samforeman.me/qmd/dope-slides/)

References

- Criteria for exact [qudit universality](http://dx.doi.org/10.1103/PhysRevA.71.052318) \bullet
- Characterization of control in a [superconducting](http://dx.doi.org/10.1103/PhysRevResearch.3.L042007) qutrit using randomized \bullet [benchmarking](http://dx.doi.org/10.1103/PhysRevResearch.3.L042007)
- Efficient Circuits for [Exact-Universal](https://arxiv.org/abs/quant-ph/0509161) Computations with Qudits \bullet
- Qudits and [High-Dimensional](http://dx.doi.org/10.3389/fphy.2020.589504) Quantum Computing \bullet
- [Asymptotically](https://arxiv.org/abs/quant-ph/0410116) Optimal Quantum Circuits for d-Level Systems

Extras

Details that were swept under the rug

Baker-Campbell-Hausdorff formula

Given two matrices $\bf A, \bf B$, the Baker-Campbell-Hausdorff formula gives us a value for C that solves the equation; $\exp({\bf A}) \exp({\bf B}) = \exp({\bf C})$ for possible non-commuting ${\bf A}, {\bf B}.$ The formula is given by

$$
\mathbf{C} = \mathbf{A} + \mathbf{B} + \frac{1}{2}[\mathbf{A},\mathbf{B}] + \frac{1}{12}[\mathbf{A},[\mathbf{A},\mathbf{B}]] - \frac{1}{12}[\mathbf{B},[\mathbf{A},\mathbf{B}]] + \cdots
$$

For two givens rotations $\mathbf{G}(i,j), \mathbf{G}(k,l)$, the commutator is given by

$$
\begin{aligned} \bullet \ \ i=k, j=l: [\mathbf{G}(i,j), \mathbf{G}(k,l)]=0 \\ \bullet \ i\neq k, j\neq l: [\mathbf{G}(i,j), \mathbf{G}(k,l)]=0 \\ \bullet \ j=k: [\mathbf{G}(i,j), \mathbf{G}(j,l)]=\mathbf{G'}(i,l) \end{aligned}
$$