Error estimates and asymptotic analysis for exact qudit universality

Lukshya Ganjoo lganjoo@uw.edu

University of Washington

2024-05-17

Error estimates and asymptotic analysis for exact qudit universality

Lukshya Ganjoo Sara Mouradian, Vikram Kashyap

Overview

- 1. Preliminaries and some background
- 2. The actual problem of universality
 - A sketch of universality
 - An end to universality
- 3. Connectivity graphs and toy architectures
 - Graph decomposition lengths!!
- 4. An experimental error-model
- 5. Errors in a quantum computation build linearly
- 6. Extras

Preliminaries and some background

Ouestion

Given that we have a quantum state $|\psi\rangle \in \mathbb{C}^d$ and a unitary matrix $\mathbf{U} \in \mathbb{C}^{d \times d}$, can living in a larger Hilbert space can help us describe a significantly larger set of unitary evolutions?

</>> Definition

A qu(d)it is a quantum version of d-ary digits where the state can be described by a vector in a ddimensional \mathcal{H}_d Hilbert space. The basis vectors are denoted by $\ket{0}, \ket{1}, \cdots, \ket{d-1}$, and the state of a qudit has the general form

$$|\psi
angle = \sum_{i=0}^{d-1} lpha_i \, |i
angle \in \mathbb{C}_d ext{ and } \sum_{i=0}^{d-1} |lpha_i|^2 = 1$$

An example when d=1 is the uniform superposition of 1 and 0, i.e.

$$\ket{\psi} = rac{1}{\sqrt{2}} \left(\ket{0} + \ket{1}
ight)$$

Preliminaries and some background

</>> Definition

A Givens rotation is represented by a matrix of the form

$${f G}(i,j, heta) = egin{bmatrix} 1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \ dots & \ddots & dots & \ddots & dots & dots$$

where $c = \cos(\theta)$ and $s = \sin(\theta)$. Here $c, s \in \mathbb{R}$ but generalizations to $c, s \in \mathbb{C}$ can be made. Intuitively, a Givens rotation is a rotation between the *i*-th and *j*-th axes in the overarching *d*-dimensional Hilbert space \mathcal{H}^d .

The actual problem of universality

Theorem

 $\mathbf{G}(i, j, \theta)$ is orthonormal and its generalizations with complex valued entries are unitary, i.e.

 $\mathbf{G}^{\dagger}\mathbf{G} = \mathbf{G}\mathbf{G}^{\dagger} = \mathbf{I}$

Since "orthonormality" is preserved under taking products, a corollary of this is that the product of *d* Givens rotations is also unitary.

🎯 Goal

Given any $\mathbf{U} \in \mathbf{C}^{d \times d}$, can we write \mathbf{U} down as a product of rotations acting on a 2-dimensional subspace of \mathcal{H}^d , i.e.

$$\mathbf{U} = \mathbf{U}_{i_1,j_1}\mathbf{U}_{i_2,j_2}\cdots\mathbf{U}_{i_k,j_k}$$

As it turns out yes, we can! There exists something known as the **QR decomposition** where a matrix can be decomposed into a productx of orthogonal and upper triangular matrices and it turns out the **Givens rotations** are the building blocks of this decomposition.

A sketch of universality

📢 Fact

Any unitary $\mathbf{U} \in \mathbf{C}^{d imes d}$ can be written as

 $\mathbf{U}=\mathbf{Q}\mathbf{R}$

where ${f Q}$ is a product of d Givens rotations and ${f R}$ is a diagonal matrix

Proof: The intuition here is that pre-multiplying on the left of \mathbf{U} by an appropriate Givens rotation that for some (i, j) zeroes out those specific entry. Note we only need to consider the matrix entries of \mathbf{U} corresponding to the *i*-th and *j*-th columns (since the rest of the columns are unaffected by the rotation). Indeed, we let $\mathbf{U}_{i,j} \in \mathbb{R}^{2 \times 2}$ be the the block-matrix that gets affected by the Givens rotation.

$$egin{bmatrix} c & s \ -s & c \end{bmatrix} egin{bmatrix} u_{i,i} & u_{i,j} \ u_{j,i} & u_{j,j} \end{bmatrix} = egin{bmatrix} r_{i,i} & r_{i,j} \ 0 & r_{j,j} \end{bmatrix}$$

An end to universality

The above matrix equality gives us a set of four equations namely

$$ca_{i,i} + sa_{j,i} = r_{i,i} \quad ext{and} \quad ca_{i,j} + sa_{j,j} = r_{i,j} \ -sa_{i,i} + ca_{j,i} = 0 \quad ext{and} \quad -sa_{i,j} + ca_{j,j} = r_{j,j}$$

Solving the above set of equations and noting that $c^2 + s^2 = 1$ in order to preserve orthonormality of ${f Q}$, we obtain some familiar looking formulas for c,s namely

$$c = rac{a_{i,i}}{\sqrt{a_{i,i}^2 + a_{j,i}^2}} \quad ext{and} \quad s = rac{a_{j,i}}{\sqrt{a_{i,i}^2 + a_{j,i}^2}}$$

Time-complexity For any $\mathbf{U} \in \mathbf{C}^{d imes d}$, we may get unlucky and have to single out every single entry below the main diagonal; which requires $\sum_{i=1}^{d-1} i = rac{d(d-1)}{2} = \binom{d}{2} \in \mathcal{O}(d^2)$

Connectivity Graphs and toy architectures

</> </> Definition

For a qu(d)it, we can define a connectivity graph where each node represents a level of the qudit and the edges represent the possible transitions between the levels.

🛞 Algorithm

1. input: $\mathbf{U} \in \mathbb{C}^{d imes d}$, $\mathcal{G} = (V, E)$

2. decompose: Generate the set of required givens rotations

 $\mathcal{R} = \{ \mathbf{G}_{i,j} \in \mathbb{C}^{d imes d} \mid 2 \leq i < j \leq d-1 \}$

such that $\mathbf{G}_{2,1} \dots \mathbf{G}_{d,d-1} \mathbf{U} = \mathbf{R}$

3. augmentation : For each $\mathbf{G}_{i,j}$

- if $(i,j)\in E$, do nothing
- else find shortest path between i and j $(i, v_1, \dots, v_{k-1}, v_k, j)$

$$\mathbf{G}_{i,j} = \mathcal{S}_{i,v_1} \dots \mathcal{S}_{v_{k-1},v_k} \mathbf{G}_{v_k,j} \mathcal{S}_{v_{k-1},v_k} \dots \mathcal{S}_{i,v_1}$$

4. return: $\mathcal{S}_{\ell,m}, \mathbf{G}_{v_k,j}, \mathbf{R}$

Following some motivation via the ${}^{40}Ca^+$ ion trap and some other trapped ion designs, we consider the following toy architectures:

Graph decomposition lengths

An experimental error-model

Each givens rotation can be written as $\exp(i\theta \mathbf{H})$ for some hermitian \mathbf{H} and some angle θ . Since we've dealt with decomposition length we can now focus on primaryly fidelity. Assume that physically we can realize each givens rotation with some rotation angle error namely $\exp(i(\theta + \delta)\mathbf{H})$. More concretely let k be the decomposition length of the unitary that we'd like to implement, thereby giving us

$$\mathbf{U}_{ ext{ideal}} = \prod_{i=1}^k \exp(i heta_i \mathbf{H_i}) = \prod_{i=1}^k \mathbf{U}_i$$

 $\mathbf{U}_{ ext{ion}} = \prod_{i=1}^k \exp(i(heta_i + \delta_i) \mathbf{H}_i) = \prod_{i=1}^k \exp(i heta_i \mathbf{H}_i) \exp(i\delta_i \mathbf{H}_i) = \prod_{i=1}^k \mathbf{U}_i \mathcal{E}_i$

An experimental error-model

Given some arbitary starting state $|\psi
angle\in\mathbb{C}^d$, we have that

$$egin{aligned} \mathcal{F} &= \left| egin{aligned} \left\langle \psi
ight| \mathbf{U}_{ ext{ideal}}^{\dagger} \mathbf{U}_{ ext{ion}} \left| \psi
ight
angle
ight| = \left| egin{aligned} \left\langle \psi
ight| \left(\prod_{j=1}^{k} \mathbf{U}_{j}
ight)^{\dagger} \left(\prod_{j=1}^{k} \mathbf{U}_{j} \mathcal{E}_{j}
ight) \left| \psi
ight
angle
ight| \ &\geq \left| egin{aligned} \left\langle \psi
ight| \exp \left(i \cdot \sum_{j=1}^{k} \delta_{j} \cdot \mathbf{H}_{j}
ight) \left| \psi
ight
angle
ight| \ &= \left| egin{aligned} \left\langle \psi
ight| \exp \left(i \cdot k \delta_{ ext{avg}} \cdot \mathcal{H}_{ ext{avg}}
ight) \left| \psi
ight
angle
ight| \ &= \left| egin{aligned} \left\langle \psi
ight| \exp \left(i \cdot k \delta_{ ext{avg}} \cdot \mathcal{H}_{ ext{avg}}
ight) \left| \psi
ight
angle
ight| \ &= \left| egin{aligned} \left\langle \psi
ight| \exp \left(i \cdot k \delta_{ ext{avg}} \cdot \mathcal{H}_{ ext{avg}}
ight) \left| \psi
ight
angle
ight| \ &= \left| egin{aligned} \left\langle \psi
ight| \exp \left(i \cdot k \delta_{ ext{avg}} \cdot \mathcal{H}_{ ext{avg}}
ight) \left| \psi
ight
angle
ight| \ &= \left| egin{aligned} \left\langle \psi
ight| \exp \left(i \cdot k \delta_{ ext{avg}} \cdot \mathcal{H}_{ ext{avg}}
ight) \left| \psi
ight
angle
ight| \ &= \left| egin{aligned} \left\langle \psi
ight| \exp \left(i \cdot k \delta_{ ext{avg}} \cdot \mathcal{H}_{ ext{avg}}
ight) \left| \psi
ight
angle
ight| \ &= \left| egin{aligned} \left\langle \psi
ight| \exp \left(i \cdot k \delta_{ ext{avg}} \cdot \mathcal{H}_{ ext{avg}}
ight
angle \mathcal{H}_{ ext{avg}}
ight
angle \psi
ight
angle
ight| \ &\approx \left(1 - rac{1}{2} k^2 \delta_{ ext{avg}}^2
ight
angle \mathcal{H}_{ ext{avg}} \mathcal{H}_{ ext{avg}} \mathcal{H}_{ ext{avg}} enterm{avg} enterm{avg$$

Errors in a quantum computation build linearly

</> </> Definition

Given two quantum states ho,σ in terms of their density matrices, their trace distance is defined as

$$||
ho - \sigma||_{ ext{tr}} = rac{1}{2} \sup_{\mathbf{U} \in \mathbb{C}^{n imes n}} ext{trace} \left| \mathbf{U}
ho \mathbf{U}^{\dagger} - \mathbf{U} \sigma \mathbf{U}^{\dagger}
ight|.$$

where the supremum is over all $n \times n$ unitary matrices and the absolute value of a matrix is defined as the matrix with the same entries as the original matrix but with all entries replaced by their absolute values.

Let $\mathbf{U}_1, \mathbf{U}_2, \dots, \mathbf{U}_T$ be a sequence of unitary operators; each representing the ideal unitary operator at time t. Let $\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_T$ be the noisy approximations to \mathbf{U}_i that we actually implement.

Errors in a quantum computation build linearly

Scheorem

Suppose $||\mathbf{U}_i
ho\mathbf{U}_i^\dagger-\mathbf{V}_i
ho\mathbf{V}_i^\dagger||_{ ext{tr}}\leqarepsilon$ for all i and mixed states ho. Then

$$||\mathbf{U}_T\dots\mathbf{U}_1
ho\mathbf{U}_1^\dagger\dots\mathbf{U}_T^\dagger-\mathbf{V}_T\dots\mathbf{V}_1
ho\mathbf{V}_1^\dagger\dots\mathbf{V}_T^\dagger||_{\mathrm{tr}}\leqarepsilon T$$

The general case easily follows by induction.

Thank you and acknowledgements

- Personal links:
 - link to github
 - reach out!
 - website

- Huge thank you to:
 - Sara Mouradian
 - Vikram Kashyap
 - Scalable quantum research lab
 - Sam Foreman for his wonderful template

References

- Criteria for exact qudit universality
- Characterization of control in a superconducting qutrit using randomized benchmarking
- Efficient Circuits for Exact-Universal Computations with Qudits
- Qudits and High-Dimensional Quantum Computing
- Asymptotically Optimal Quantum Circuits for d-Level Systems

Extras

Details that were swept under the rug

👹 Baker-Campbell-Hausdorff formula

Given two matrices \mathbf{A}, \mathbf{B} , the Baker-Campbell-Hausdorff formula gives us a value for C that solves the equation; $\exp(\mathbf{A}) \exp(\mathbf{B}) = \exp(\mathbf{C})$ for possible non-commuting \mathbf{A}, \mathbf{B} . The formula is given by

$${f C} = {f A} + {f B} + rac{1}{2} [{f A}, {f B}] + rac{1}{12} [{f A}, [{f A}, {f B}]] - rac{1}{12} [{f B}, [{f A}, {f B}]] + \cdots$$

For two givens rotations $\mathbf{G}(i,j), \mathbf{G}(k,l)$, the commutator is given by

•
$$i = k, j = l: [\mathbf{G}(i, j), \mathbf{G}(k, l)] = 0$$

• $i \neq k, j \neq l: [\mathbf{G}(i, j), \mathbf{G}(k, l)] = 0$
• $j = k: [\mathbf{G}(i, j), \mathbf{G}(j, l)] = \mathbf{G'}(i, l)$