Commutative Algebra and Algebraic Geometry

Miles Reid

Washington Directed Reading Program

Brian Nugent, Lukshya Ganjoo March 06, 2024

Given a commutative ring *R* and an ideal $I \subset R$, *I* is said to be **maximal** iff for any ideal *J* \subseteq *R*, where *I* \subseteq *J*; either *I* = *J* or *J* = *R*.

Proposition 1

Suppose that Σ *is a non-empty set with a partial order and that any totally ordered subset S* ⊂ Σ *has an upper bound in* Σ*. Then* Σ *has a maximal element.*

Proposition 2

Let A be a ring and $I \neq A$ *an ideal; then there exists a maximal ideal of A containing I.*

Intuitively the proof of this proposition essentially consists of saying that if *I* is not already maximal, then it is contained in a bigger ideal and so on. To make the "and so on" rigorous, we need **Zorn's Lemma**

Proof.

Let us define the following set Σ

$$
\Sigma = \{ J_i \neq A \mid I \subseteq J_i \subset A \}
$$

It is easy to see that *I* $\in \Sigma$ and therefore Σ is non-empty. Additionally, we note that set inclusion is a partial ordering on any collection of sets, and therefore we use inclusion as the partial ordering on Σ . We then note that if $\{J_{\lambda}\}_{{\lambda \in \Lambda}}$ is a totally ordered subset of Σ ,

$$
J^* = \bigcup_{\lambda \in \Lambda} J_{\lambda} \quad \text{ is an ideal where } J^* \neq A
$$

Indeed J^* is an upper bound of $\{J_\lambda\}_{\lambda \in \Lambda}$, and since all the conditions of **Zorn's Lemma** have been met, we can assert that Σ contains a maximal element.

For a ring A, an element $a \in A$ *is either a unit, or is contained in a maximal ideal, and not both. If we define A*[×] *as the set of units of A, then*

$$
A = A^{\times} \sqcup \bigcup_{m \in \mathcal{M}} m \quad \text{where } \mathcal{M} \text{ is the set of maximal ideals of } A
$$

Proof.

=⇒ : Let *a* ∈ *A* be contained in some maximal ideal *m*. We claim that *a* cannot be a unit. Indeed; suppose it was. If so, there exists a $u \in A$ such that $au = 1_A$. Since *m* is an ideal, it absorbs products; and therefore $1_A = au \in m$. This implies that $m = A$, a contradiction!

⇐= : For this direction, we use **Zorn's Lemma**. Indeed if *a* is not a unit, then $1_A \notin (a)$, necessitating $(a) \neq A$. By **Proposition 2**, $a \in (a) \subset J$ for some maximal ideal *J* which completes the proof. \Box

Modules and Nakayama's Lemma

Definition 2

Given a ring *A*, *M* is said to be an *A***-module** iff it is an abelian group with a multiplication map such that

 $A \times M \mapsto M$ written $(f, m) \mapsto fm$

satisfying for all $f, q \in A$ and $m, n \in M$

- 1. $f(m \pm n) = fm \pm fn$
- 2. $(f+g)m = fm + gm$
- 3. $(fq)m = f(qm)$

$$
4. \ 1_A m = m
$$

The intuition here is simply that **modules** over fields are vector spaces and all the stuff we do with modules can be thought of as linear algebra where scalar multiplication is with elements contained in *A* and linear combinations consist of coefficients in *M*.

A ring *A* is said to be **local** if it has a unique maximal ideal. We write this down as (*A, m*) where *m* denotes the aforementioned maximal ideal.

Definition 4

An *A*-module *M* is said to be **finite** or **finitely generated** if there exist $a_1, a_2, \ldots, a_n \in M$ such that for any $x \in M$,

$$
x = \sum_{i=1}^{n} r_i a_i \quad \text{for some } \{r_i\}_{i=1}^{n}
$$

Let (A, m) *be a local ring and* M *a finite* A *-module; then* $M = mM$ *implies that* $M = 0$ *.*

Proof.

Let (a_1, a_2, \ldots, a_n) be a minimal set of generators for *M*. Clearly $a_1 \in (a_1, a_2, \ldots, a_n) = M$. Since $M = mM$, there exist $\{m_i\}_{i=1}^n$ where $m_i \in m$ such that

$$
a_1 = m_1 a_1 + m_2 a_2 + \dots m_n a_n
$$

(1 - m₁) $a_1 = m_2 a_2 + \dots + m_n a_n$
 $a_1 = \frac{1}{1 - m_1} (m_2 a_2 + \dots + m_n a_n)$ since 1 - m₁ is a unit

This is a contradiction since we assumed (a_1, a_2, \ldots, a_n) was a minimal set of generators for *M*, thereby necessitating that $M = (0)$ and completing the proof. П

Let (A, m) *be a local ring with* $m_1 \in m$. Then $1 - m_1$ *is a unit.*

Proof.

Since m_1 ∈ m , we claim that $1 - m_1$ is a unit. Assume not, then by **Proposition 3**, $1 - m_1 \in m$. Since ideals are closed under addition,

$$
1_A = m_1 + (1 - m_1) \in m \implies m = A
$$

which yields the desired contradiction.

 \Box

A ring *A* is said to be **Noetherian** iff any one of the following three conditions are satisfied

• The set Σ of ideals of *A* has the **ascending chain condition**, i.e. for every increasing chain of ideals

*I*₁ ⊂ *I*₂ ⊂ · · · ∈ *I*_{*k*} ⊂ ...

eventually stops, i.e. $I_n = I_{n+1}$ for some *n*.

- Every non-empty set S of ideals has a maximal element.
- Every ideal *I* ⊂ *A* is finitely generated.

Note that the above conditions are equivalent conditions for a **Noetherian ring**.

If A is a Noetherian ring, then any subjective ring homomorphism $\varphi: A \to A$ *is additionally injective.*

Proof.

We first claim that for $n \in \mathbb{N}$, $\ker(\varphi^n)$ is an ideal. Indeed we argue in the standard way

• **Closed under subtraction and products:** For $a, b \in \text{ker}(\varphi^n)$, clearly

$$
\varphi^n(a-b) = \underbrace{\varphi^n(a)}_0 - \underbrace{\varphi^n(b)}_0 \implies a - b \in \ker(\varphi^n)
$$

and in much of the same way

$$
\varphi^n(ab) = \varphi^n(a)\varphi^n(b) \implies ab \in \ker(\varphi^n)
$$

where we make use of the fact that φ is a homomorphism.

Proof.

• **Absorption of products:** Let $a \in A$ and $k \in \text{ker}(\varphi^n)$, then

$$
\varphi^n(ak) = \varphi^n(a) \underbrace{\varphi^n(k)}_0 \implies ak \in \ker(\varphi^n)
$$

Therefore $\ker(\varphi^n)$ is an ideal. Now we argue that the kernels of φ^n form an ascending chain of ideals of *A*. Indeed, let $a \in \text{ker}(\varphi^n)$. Then

$$
\varphi^n(a) = 0 \implies \varphi^{n+1}(a) = \varphi(\varphi^n(a)) = 0 \implies a \in \ker(\varphi^{n+1})
$$

Now we proceed onto the main part of the proof. Since *A* is **Noetherian** and $\{ \text{ker}(\varphi^n) \}_{n \geq 1}$ is an ascending chain of ideals, there exists $m \in \mathbb{N}$ s.t. **ker**(φ^m) = **ker**(φ^{m+1}) П

Proof.

Then let $a \in \text{ker}(\varphi)$. Since φ is subjective, there exists $a_1 \in A$ s.t. $\varphi(a_1) = a$. Inductively, we can find $\{a_i\}_{i=1}^m \subset A$ where $\varphi(a_i) = a_{i-1}$. Therefore

$$
\varphi^m(a_m) = a \implies \varphi^{m+1}(a_m) = 0
$$

Since $a_m \in I_{m+1} = I_m$, we obtain $\varphi^m(a_m) = a = 0$, necessitating **ker**(φ) = {0}. This completes the proof (a homomorphism *f* is said to be injective iff **ker**(f) = {0}). П

Proposition 7

For a Noetherian ring A, then A[*X*] *is also Noetherian.*

[Okay so where's the geometry](#page-12-0)

The **prime spectrum** or Spec(*A*) is the set of prime ideals of *A*, i.e.

 $Spec(A) = {P | P \subset A \text{ is a prime ideal}}$

Definition 7

The **nilradical** of a ring *A* is defined as the set of all nilpotent elements of *A*, i.e.

nilrad(*A*) = {*a* |
$$
a^n = 0
$$
; $a \in A, n > 0$ }

Definition 8

The **radical** of an ideal *I* in a ring *R* is defined as

$$
\sqrt{I} = \text{rad}(I) = \{r \in R \mid r^n \in I; n > 0\}
$$

Let *k* be a field. A **variety** $V \subset k^n$ is a subset of the form

$$
V = V(J) = \{ P = (a_1, \dots, a_n) \in k^n \mid f(P) = 0 \text{ for all } f \in J \}
$$

where $J \subset k[X_1, \ldots, X_n]$ is an ideal.

Since $k[X_1, \ldots, X_n]$ is a **Noetherian ring**, *J* is finitely generated, i.e. $J = (f_1, \ldots, f_m)$ and therefore a variety is defined by

$$
f_1(P) = f_2(P) = \dots = f_m(P) = 0
$$

Intuitively a variety is simply a set of common zeros to a collection of polynomial equations.

Let k be an algebraically closed field.

1. If $J \subset k[X_1,\ldots,X_n]$, then $V(J) \neq \emptyset$ 2. $I(V(J)) = rad(J)$ *, i.e. for* $f \in k[X_1, \ldots, X_n]$ *,*

 $f(P) = 0$ *for all* $P \in V \Leftrightarrow f^n \in J$ *for some n*

where I(*U*) *is the ideal of all polynomials that vanish on the set U.*

Consequence: Gives a one-to-one correspondence between algebraic varieties and the radical ideals of a ring.

Definition 10

A field *k* is said to be **algebraically closed** iff every non-constant polynomial in *k*[*X*] has a root in *k*.

Corollary 1

Let k be an algebraically closed field, and let $I \subseteq k[X_1, \ldots, X_N]$ *be an ideal such that* $V(I) = \emptyset$ *. Then* $I = k[X_1, \ldots, X_n]$

Corollary 2

The maximal ideals of $\mathbb{C}[X_1, \ldots, X_n]$ *are precisely those maximal ideals that come from points, i.e. ideals of the form* $(x_1 - a_1, \ldots, x_n - a_n)$ *for* $a_1, \ldots, a_n \in \mathbb{C}$

- 1. The Nullstellensatz shows up in Buchberger's algorithm in geometry, a technique used to transform a given set of polynomials into a Gröbner basis.
- 2. Used in the proof of Stickelberger's theorem which shows up in algebraic number theory and deals with annihilators in rings and ideals.
- 3. Determines whether a solution to polynomial problems exists when working within the framework of semi-definite programming problems.
- 4. Proof of Ax-Grothendieck theorem that discusses the relationship between a function's injective and bijective properties.
- 1. **Localization:** A ring of fractions corresponds to restricting functions on the spectrum of said ring to a specific open subset.
- 2. **Primary decomposition:**
- 3. **Integral extensions and normalization**
- 4. **Discrete valuation rings:** The best kind of UFD's (the ones having only one prime).
- 5. **A noetherian normal ring is an intersection of DVR's**
- 6. **Finiteness of normalization**

Thank you!

