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Existence of maximal ideals

Definition 1
Given a commutative ring R and an ideal I ⊂ R, I is said to be
maximal iff for any ideal J ⊆ R, where I ⊆ J ; either I = J or J = R.

Proposition 1
Suppose that Σ is a non-empty set with a partial order and that any totally
ordered subset S ⊂ Σ has an upper bound in Σ. Then Σ has a maximal
element.

Proposition 2
Let A be a ring and I ̸= A an ideal; then there exists a maximal ideal of A

containing I .

Intuitively the proof of this proposition essentially consists of saying
that if I is not already maximal, then it is contained in a bigger ideal
and so on. To make the "and so on" rigorous, we need Zorn’s Lemma
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Existence of maximal ideals

Proof.
Let us define the following set Σ

Σ = {Ji ̸= A | I ⊆ Ji ⊂ A}

It is easy to see that I ∈ Σ and therefore Σ is non-empty. Additionally,
we note that set inclusion is a partial ordering on any collection of
sets, and therefore we use inclusion as the partial ordering on Σ. We
then note that if {Jλ}λ∈Λ is a totally ordered subset of Σ,

J∗ =
⋃

λ∈Λ

Jλ is an ideal where J∗ ̸= A

Indeed J∗ is an upper bound of {Jλ}λ∈Λ, and since all the conditions
of Zorn’s Lemma have been met, we can assert that Σ contains a
maximal element.
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Existence of maximal ideals

Proposition 3
For a ring A, an element a ∈ A is either a unit, or is contained in a maximal
ideal, and not both. If we define A× as the set of units of A, then

A = A× ⊔
⋃

m∈M
m where M is the set of maximal ideals of A

Proof.
=⇒ : Let a ∈ A be contained in some maximal ideal m. We claim that
a cannot be a unit. Indeed; suppose it was. If so, there exists a u ∈ A

such that au = 1A. Since m is an ideal, it absorbs products; and
therefore 1A = au ∈ m. This implies that m = A, a contradiction!

⇐= : For this direction, we use Zorn’s Lemma. Indeed if a is not a
unit, then 1A /∈ (a), necessitating (a) ̸= A. By Proposition 2,
a ∈ (a) ⊆ J for some maximal ideal J which completes the proof.
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Modules and Nakayama’s Lemma

Definition 2
Given a ring A, M is said to be an A-module iff it is an abelian group
with a multiplication map such that

A × M 7→ M written (f, m) 7→ fm

satisfying for all f, g ∈ A and m, n ∈ M

1. f(m ± n) = fm ± fn

2. (f + g)m = fm + gm

3. (fg)m = f(gm)
4. 1Am = m

The intuition here is simply that modules over fields are vector spaces
and all the stuff we do with modules can be thought of as linear
algebra where scalar multiplication is with elements contained in A

and linear combinations consist of coefficients in M .
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Modules and Nakayama’s Lemma

Definition 3
A ring A is said to be local if it has a unique maximal ideal. We write
this down as (A, m) where m denotes the aforementioned maximal
ideal.

Definition 4
An A-module M is said to be finite or finitely generated if there exist
a1, a2, . . . , an ∈ M such that for any x ∈ M ,

x =
n∑

i=1
riai for some {ri}n

i=1
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The actually fun stuff (Nakayama’s Lemma)

Proposition 4
Let (A, m) be a local ring and M a finite A-module; then M = mM

implies that M = 0.

Proof.
Let (a1, a2, . . . , an) be a minimal set of generators for M . Clearly
a1 ∈ (a1, a2, . . . , an) = M . Since M = mM , there exist {mi}n

i=1 where
mi ∈ m such that

a1 = m1a1 + m2a2 + . . . mnan

(1 − m1)a1 = m2a2 + · · · + mnan

a1 = 1
1 − m1

(m2a2 + · · · + mnan) since 1 − m1 is a unit

This is a contradiction since we assumed (a1, a2, . . . , an) was a
minimal set of generators for M , thereby necessitating that M = (0)
and completing the proof.
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Nakayama’s Lemma (Ctd)

Proposition 5
Let (A, m) be a local ring with m1 ∈ m. Then 1 − m1 is a unit.

Proof.
Since m1 ∈ m, we claim that 1 − m1 is a unit. Assume not, then by
Proposition 3, 1 − m1 ∈ m. Since ideals are closed under addition,

1A = m1 + (1 − m1) ∈ m =⇒ m = A

which yields the desired contradiction.
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Noetherian Rings (the best kind of rings)

Definition 5
A ring A is said to be Noetherian iff any one of the following three
conditions are satisfied

• The set Σ of ideals of A has the ascending chain condition, i.e.
for every increasing chain of ideals

I1 ⊂ I2 ⊂ · · · ⊂ Ik ⊂ . . .

eventually stops, i.e. In = In+1 for some n.
• Every non-empty set S of ideals has a maximal element.
• Every ideal I ⊂ A is finitely generated.

Note that the above conditions are equivalent conditions for a
Noetherian ring.
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Surjective homomorphism over Noetherian rings

Proposition 6
If A is a Noetherian ring, then any subjective ring homomorphism
φ : A → A is additionally injective.

Proof.
We first claim that for n ∈ N, ker(φn) is an ideal. Indeed we argue in
the standard way

• Closed under subtraction and products: For a, b ∈ ker(φn),
clearly

φn(a − b) = φn(a)︸ ︷︷ ︸
0

− φn(b)︸ ︷︷ ︸
0

=⇒ a − b ∈ ker(φn)

and in much of the same way

φn(ab) = φn(a)φn(b) =⇒ ab ∈ ker(φn)

where we make use of the fact that φ is a homomorphism. 9



Surjective homomorphisms over Noetherian rings

Proof.

• Absorption of products: Let a ∈ A and k ∈ ker(φn), then

φn(ak) = φn(a) φn(k)︸ ︷︷ ︸
0

=⇒ ak ∈ ker(φn)

Therefore ker(φn) is an ideal. Now we argue that the kernels of φn

form an ascending chain of ideals of A. Indeed, let a ∈ ker(φn). Then

φn(a) = 0 =⇒ φn+1(a) = φ(φn(a)) = 0 =⇒ a ∈ ker(φn+1)

Now we proceed onto the main part of the proof. Since A is
Noetherian and {ker(φn)}n≥1 is an ascending chain of ideals, there
exists m ∈ N s.t. ker(φm) = ker(φm+1)
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Surjective homomorphisms over Noetherian rings

Proof.
Then let a ∈ ker(φ). Since φ is subjective, there exists a1 ∈ A s.t.
φ(a1) = a. Inductively, we can find {ai}m

i=1 ⊂ A where φ(ai) = ai−1.
Therefore

φm(am) = a =⇒ φm+1(am) = 0

Since am ∈ Im+1 = Im, we obtain φm(am) = a = 0, necessitating
ker(φ) = {0}. This completes the proof (a homomorphism f is said to
be injective iff ker(f) = {0}).

Proposition 7
For a Noetherian ring A, then A[X] is also Noetherian.
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Okay so where’s the geometry
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The Nullstellensatz

Definition 6
The prime spectrum or Spec(A) is the set of prime ideals of A, i.e.

Spec(A) = {P | P ⊂ A is a prime ideal}

Definition 7
The nilradical of a ring A is defined as the set of all nilpotent
elements of A, i.e.

nilrad(A) = {a | an = 0; a ∈ A, n > 0}

Definition 8
The radical of an ideal I in a ring R is defined as

√
I = rad(I) = {r ∈ R | rn ∈ I; n > 0}
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The Nullstellensatz

Definition 9
Let k be a field. A variety V ⊂ kn is a subset of the form

V = V (J) = {P = (a1, . . . , an) ∈ kn | f(P ) = 0 for all f ∈ J}

where J ⊂ k[X1, . . . , Xn] is an ideal.

Since k[X1, . . . , Xn] is a Noetherian ring, J is finitely generated, i.e.
J = (f1, . . . , fm) and therefore a variety is defined by

f1(P ) = f2(P ) = · · · = fm(P ) = 0

Intuitively a variety is simply a set of common zeros to a collection of
polynomial equations.
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The Nullstellensatz

Proposition 8
Let k be an algebraically closed field.

1. If J ⊂ k[X1, . . . , Xn], then V (J) ̸= ∅
2. I(V (J)) = rad(J), i.e. for f ∈ k[X1, . . . , Xn],

f(P ) = 0 for all P ∈ V ⇔ fn ∈ J for some n

where I(U) is the ideal of all polynomials that vanish on the set U .

Consequence: Gives a one-to-one correspondence between algebraic
varieties and the radical ideals of a ring.

Definition 10
A field k is said to be algebraically closed iff every non-constant
polynomial in k[X] has a root in k.
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The Nullstellensatz

Corollary 1
Let k be an algebraically closed field, and let I ⊆ k[X1, . . . , XN ] be an ideal
such that V (I) = ∅. Then I = k[X1, . . . , Xn]

Corollary 2
The maximal ideals of C[X1, . . . , Xn] are precisely those maximal ideals that
come from points, i.e. ideals of the form (x1 − a1, . . . , xn − an) for
a1, . . . , an ∈ C
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Applications

1. The Nullstellensatz shows up in Buchberger’s algorithm in
geometry, a technique used to transform a given set of
polynomials into a Gröbner basis.

2. Used in the proof of Stickelberger’s theorem which shows up in
algebraic number theory and deals with annihilators in rings and
ideals.

3. Determines whether a solution to polynomial problems exists
when working within the framework of semi-definite
programming problems.

4. Proof of Ax-Grothendieck theorem that discusses the
relationship between a function’s injective and bĳective
properties.
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Lots we didn’t talk about

1. Localization: A ring of fractions corresponds to restricting
functions on the spectrum of said ring to a specific open subset.

2. Primary decomposition:
3. Integral extensions and normalization
4. Discrete valuation rings: The best kind of UFD’s (the ones

having only one prime).
5. A noetherian normal ring is an intersection of DVR’s
6. Finiteness of normalization
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Thank you!
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